
establish graduate certificate programs
to integrate computational research
into PhD education. As new initiatives
appeared at the government level for
high-performance computing and com-
munications and the job market heated
up, the need for new CSE profession-
als at MS and even BS levels became
obvious. To help fill this need, the US
Government offers support to educate
future computational scientists (see
www.itr.nsf.gov), including at the un-
dergraduate level. But how do we edu-
cate these students?

At the 1999 High Performance
Computer Users Group Conference
(see www.hpcu.org), organized by the
Computational Science faculty at the
State University of New York, Brock-
port, a session on CSE education gath-
ered valuable input from the commu-
nity. We had an interesting session
there on Brockport’s undergraduate
CSE program.

CSE as a new focus area
CSE overlaps with many other knowl-

edge areas, so an educational program
in CSE naturally draws strength from
all of them. Nevertheless, in addition to
overlapping with computer science,
math, and science and engineering ap-
plication areas, computational science
has its own core knowledge area (see
Figure 1). Although some computer
science and mathematics programs
have championed this new field, CSE
also finds strong allies in other science
departments, particularly physics and
biology. In most cases, it was estab-
lished through a widely interdiscipli-
nary effort.

Computational science and com-
puter science have common concerns
when it comes to computer perfor-
mance and application optimization;
computational science and mathemat-
ics have common concerns when it
comes to applied math techniques. Fi-
nally, CSE shares concerns with many
application areas (such as physics,
chemistry, biology, earth sciences, busi-
ness, and art) in terms of finding a com-
puter-based solution to complement

theoretical and experimental efforts. In
some cases, what we can accomplish
through computation cannot be done
otherwise. We have gained new in-
sights by modeling and visualizing
physical systems that are too small
(probing atomic systems, for example),
too big (studying the earth and the uni-
verse), too expensive, too scarce, and
inaccessible experimentally (weighing
the impact of an asteroid on earth).

Teaching, research, and service in
the CSE field differ from those in
other disciplines in many ways. Al-
though the number of students might
not be high initially, course prepara-
tion time is very demanding.  New
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A NEW PERSPECTIVE ON COMPUTATIONAL SCIENCE EDUCATION
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THE FIELD OF COMPUTATIONAL SCIENCE AND ENGINEER-

ING WAS FIRST RECOGNIZED AT RESEARCH INSTITUTIONS

AND INDUSTRIAL SETTINGS WHERE DEPENDENCY ON COMPUT-

ERS WAS GROWING RAPIDLY. PROMINENT SCHOOLS WERE FIRST TO 
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Figure 1. Computational science is a

bridge connecting computing and math

technology with the sciences, but it is
also a discipline of its own.
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courses are continually being devel-
oped, because there is still no estab-
lished curriculum, especially at the
undergraduate level. Curricula also
change frequently as new tools are de-
veloped. Faculty in programs housing
parallel supercomputers are always on
the look-out for new hardware and
software. They must also stay in close
contact with colleagues in high-per-
formance computing research centers
to keep up on supercomputer devel-
opments and maintenance. Moreover,
faculty research is crucial: a field that
involves so much information and
draws on knowledge in a wide range
of areas needs time and attention to
identify and further study common
techniques. A good example is particle
dynamics, which is encountered in
simulations of sand particles in a tank,
planetary motion, molecular dynam-
ics, thin-film growth, spray dynamics
in engines, ash particles in industrial
burners, and many others. Finally,
CSE students will require a lot of help
and advice in more than one field, and
they will expect their CSE faculty
members to be knowledgeable in most
of the program’s courses. All of these
responsibilities impinge on time avail-
able for other activities. Thus, admin-
istrators need to account for faculty
time spent on all these unique services
to the field when considering the
norms for teaching, service, and schol-
arship workloads.

What should a CSE education
include?

A CSE curriculum should include
not only the development of comput-
ing and mathematical skills in an ap-
plied way but also the study of com-
mon computational techniques, tools,
and high-performance computing
systems in the context of applications.
This requires study in the following

six knowledge areas (undergraduate
and graduate), each of which results
in specific learning outcomes. Our
Web site describes SUNY, Brock-
port’s specific curriculum, including
numbered course descriptions (www.
cps.brockport.edu).

Computational science tools. Learn-
ing to use computers is the most im-
portant aspect of CSE, because the
computer itself is the tool. Learning
outcomes include

• the ability to program in Fortran,
F90, high-performance Fortran, C,
and C++;

• a knowledge of the Unix operating
system and working environment;

• the ability to use software packages
such as Maple, Matlab, Macsyma,
and Mathematica and the application
of calculus techniques within these
software environments;

• an understanding of industrial bench-
marks such as Linpack;

• the ability to use numerical tech-
niques and applications of integra-
tion, differentiation, and partial de-
rivatives;

• the ability to use mathematical li-
braries such as Blas and ScaLapack
and problem-solving environments
such as NetSolve; and

• the ability to use visualization soft-
ware packages such as AVS.

High-performance computing.
Learning high-level languages and how
to use high-performance computers is
essential to tackle computationally de-
manding real-world problems. Learn-
ing outcomes include

• the ability to program on super-
computers,

• an understanding of computer speed
and performance benchmarks,

• an understanding of modern com-
puter architecture and language sup-
port for performance, and

• the ability to use parallel computers
and communication libraries such as
PVM and MPI.

Applied and computational meth-
ods. Knowledge of applied mathemat-
ical methods is essential for CSE ma-
jors, no matter how much the field de-
pends on computers. Although a theo-
retical understanding and a survey of
all numerical methods are important,
students in CSE must pay closer atten-
tion to the use of common methods
and their performance. Learning out-
comes include

• a knowledge of computational meth-
ods (finite difference, finite elements,
discrete particle method, discrete or-
dinates method, random-number
generators, mesh generation, adap-
tive mesh techniques, Runga-Kutta,
fast Fourier transforms, Monte
Carlo methods, and so on) to nu-
merically approximate solutions to
real-world problems; 

• a familiarity with the partial differ-
ential equations encountered in sci-
ence and engineering;

• a knowledge of generating simple
computational grids;

• a knowledge of discretizing partial
differential equations and of numer-
ical schemes to solve them;

• the ability to use these numerical
methods and software libraries;

• the ability to use matrix computa-
tions and available software libraries
(such as Linpack); and

• the ability to apply these methods,
through computer programming, to
an application area.

Simulation and modeling. This is
an important element of CSE, because



76 COMPUTING IN SCIENCE & ENGINEERING

it is the ultimate phase of solving a real-
world problem, be it a simulation of an
engine, an airplane take-off, weather
prediction, or design of a new material
or drug. Learning outcomes include

• a familiarity with the governing
equations of physical systems (conti-
nuity, momentum, and Schrödinger
equations, to name a few);

• the ability to discretize these equa-
tions in space, time, angle, or phase
space and to generate a computa-
tional grid to solve these equations;

• the ability to apply math and com-
puter programming skills to a variety
of applications; 

• the ability to analyze simulation in-
put and output data; and

• the ability to use visualization soft-
ware (such as AVS) to postprocess
output data.

Visualization tools. This is another
important final phase of problem solv-
ing through which students learn how
to interpret and analyze data after a
simulation is complete. Learning out-
comes include

• the ability to use visualization tools
such as AVS and 

• a knowledge of visualization tech-
niques.

Computer applications. Students’
exposure to a field of interest is an es-
sential part of learning in CSE. Ad-
visers help students identify the
courses they need (within the CSE
program or in related departments)
and the application areas they might
want to study. It is important to ex-
pose undergraduate CSE students to
a wide range of applications. The job
market they might enter after gradu-
ation is dynamic: most active recruit-
ment today is for computational biol-

ogists, but the market for graduates in
computational chemistry, computa-
tional physics, and computational fi-
nance is also growing rapidly. Ex-
pecting undergraduate students to
specialize in just one field before
graduation might be unrealistic; even
requiring them to take courses in a
predetermined application area (such
as physics) or in a set of areas would
be limiting.

Why aim at undergraduates?
Some CSE educators wonder

whether it is practical to have an un-
dergraduate program in this field.
There has been an assumption that an
undergraduate CSE education would
require students to undertake a heavy
course load that is difficult to manage.
Furthermore, some wonder whether
an interdisciplinary education is ob-
tained at the expense of acquiring a
deep undergraduate-level knowledge
in one particular subject. Although
some might be skeptical about the
practicality of an undergraduate CSE
education, there have not been any ex-
periments with undergraduate pro-
grams in this field supporting such
views. In fact, to our knowledge, our
experiment—the development of
SUNY, Brockport’s undergraduate
program in CSE—was the first, and it
was a very fruitful experience. We hope
that other newly established under-
graduate programs will publish experi-
ence reports in the future. It is impor-
tant to note that long before inter-
disciplinary programs (such as CSE)
were introduced at the undergraduate
level, students on many campuses were
already pursuing double and even
triple majors. This is evidence that as
heavy and diverse as a CSE program
might be, it is still practical at the un-
dergraduate level. It is important to
strike the right balance for a combined

knowledge of constituent disciplines.
Introducing CSE to undergraduates

creates a coherent and consistent pro-
gram for students. On the other side of
the spectrum is the experience of one
of us (Osman Yasar), who earned three
MS degrees—in physics, computer sci-
ence, and engineering—and a PhD in
engineering physics to pursue his ca-
reer goal in CSE. Today, graduate CSE
programs offer combined training un-
der one umbrella, which is to students’
advantage. Obviously, we cannot ex-
pect CSE students to gain the same
depth in computer science, math, and
application sciences as someone spe-
cializing in one of these fields. It is time
to publicly admit that CSE is a blend of
practical knowledge in these constitutive
fields, which in no way diminishes the
field’s importance as an academic and
scientific discipline. For students who
are interested in the sciences but do
not want to go deep into one particular
area, there ought to be a program to
teach problem solving. Moreover,
some of the deep learning that goes on
in BS, MS, and PhD programs never
gets applied after graduation. Most of
us with computer science degrees
never had to write an operating system,
a compiler, or anything involving TCP/
IP protocols after we left school. The
same thing applies to math and physics,
which require their majors to go deep
into the field, yet very few physicists
(with just an undergraduate degree)
make a living doing quantum mechan-
ics. The realities of the job market mo-
tivate students to earn a degree in ap-
plied sciences and particularly in
CSE—a respected, relatively recog-
nized, and significantly promising field
in which to pursue a career.

As mentioned earlier, computational
research and education started at the
doctorate level and are now working
their way down to both masters and

E D U C A T I O N



SEPTEMBER/OCTOBER 2000 77

baccalaureate levels. It has been our
experience that those of us (computa-
tional researchers and educators with
doctorate degrees) involved in the de-
sign of masters and baccalaureate cur-
ricula often expect all students to have
a knowledge and ability comparable to
our levels upon graduation. Because
CSE combines knowledge in com-
puter science, math, and application
sciences, mastery of all these requires
an extended education; so far, we have
seen this combination come to be re-
alized only at the doctorate level. Can
this same model be brought down to
the undergraduate level? No. We can-
not expect doctorate-level depth and
breadth nor skills from undergradu-
ates. Nor can we expect undergradu-
ate students to be able to do simula-
tions for us right away. People with
doctorates in CSE will most likely find
work in their chosen specialty area, but
an undergraduate might pursue a ca-
reer in many directions after gradua-
tion. When we extend our scholarly
perspectives to a four-year college ed-
ucation, our expectations for special-
ization run deep and narrow (see Fig-
ure 2), often overloading BS and MS
students with specialized courses that
have many prerequisites.

CSE program at SUNY, Brockport
As a part of integrating new technol-

ogy into education, SUNY, Brockport,
formed discussion groups and interdis-
ciplinary committees in the early 1990s.
In 1995, it formed a CSE cluster (among
other clusters) to prepare the college for
the next century. The institution ap-
proved recommendations offering both
undergraduate and graduate CSE pro-
grams. We created a core curriculum
based on existing courses and decided to
recruit experienced people from outside
who could add new perspectives to the
program’s future, national appeal, cur-

riculum, and course offerings. The New
York State Education Board approved
BS and MS degree programs in 1997
and 1998, respectively. Thus, Brockport
became the first—and perhaps still the
only—degree-granting undergraduate
program in CSE.

Creating the program took a great
deal of multidisciplinary effort, yet the
requirements of sustaining it needed a
core faculty body and a unit head to de-
vote full time to its growth and man-
agement. Recruiting new CSE faculty
proved difficult, because industry, na-
tional labs, and computer vendors usu-
ally pay qualified computational scien-
tists a higher salary than what academic
institutions usually offer. The school
then gave precedence to hiring a unit
head, who later built a core faculty of
qualified people. The tasks of setting
future directions, recruitment, and
other departmental administration re-
quire a great deal of attention from the
unit head, so his teaching load has been
kept at a minimum. There is much to
be investigated about the dynamics of
CSE’s interdisciplinary blend and about
the organization and study of common
techniques, overlap, and
communication among
applications. There must
be a delicate balance in
terms of what students
need to learn about each
CSE component and what
the university expects of its
faculty.

The university estab-
lished this program for
several reasons: to

• prepare for the next
century;

• boost enrollment by
stimulating renewed
interest in the science
disciplines; 

• harmoniously integrate computing
into science and engineering by es-
tablishing a coherent and interdisci-
plinary program;

• avoid duplication of courses in dif-
ferent departments, thus optimizing
human and material resources on
campus; and

• seize the opportunity of national
leadership in curriculum develop-
ment for CSE. 

SUNY, Brockport, provides an ex-
cellent environment for undergraduate
programs such as CSE to prosper. En-
tering students need not specify a ma-
jor for the first two years; in fact, they
can switch majors even after that.
There is a sense here that the bound-
aries between separate programs and
departments are flexible, perhaps be-
cause of the college’s small size or be-
cause there are many common courses
(in general education and in physical
education, for example) that bring stu-
dents with varied interests together. An
undergraduate CSE student who later
decides to move to another program
will probably not lose any credits, be-

PhD

MS

BS

Figure 2. A perspective on the depth and breadth of
CSE education.
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cause many of the courses already
taken—for instance, in computer sci-
ence, math, and physics—would count
toward any science program. This set-
ting makes it less risky for students to

try CSE. The large number of CSE
majors in our program gives us a con-
siderable pool to examine the blend
and the amount of interdisciplinary
course load needed to prepare students

for computationally oriented jobs in
the work place.

Our program has exceeded its en-
rollment targets. We have 50 students
(30 undergraduate and 20 graduate) af-

Course Number of credits

Prerequisites
Calculus I 3
Calculus II 3
Discrete Mathematics I 3
Introduction to Computer Science 3
Fundamentals of Computer Science I 4

Total 16
Major Requirements
Mathematics 9

Calculus III 3
Elementary Statistics 3
Linear Algebra 3

Computer Science 4
Fundamentals of Computer Science II 3

Computational Science 15
Computational Tools I 3
Computational Tools II 3
High-Performance Computing 3
Simulation and Modeling 3

Course Number of credits

Applied and Computational Math 3
Application Sciences 8

200-level and higher non-CSE courses, to be chosen 
under advisement

Electives 6
Selected from upper-division courses, to be chosen 
under advisement

Total 42
Minor Requirements
Computational Science Courses 12

Computational Tools I 3
Computational Tools II 3
High-Performance Computing 3
Simulation and Modeling 3

Electives 8
200-level and higher non-CSE courses, chosen under
advisement

Total 20

E D U C A T I O N

Table 1. The new undergraduate curriculum.

Course Number of credits

Major Requirements
Computer science 4

Advanced Data Structures 4
Mathematics 3

Discrete Mathematics II 3
Computational science 16

Scientific Visualization 3
Advanced Comp Software Tools 3
Supercomputing and Applications 3
Graduate Seminar 1
Independent Study 3
Project Paper 3

Total 34
Electives: 500 level and above 11

From the following courses or courses in application sci-
ences as per advisement:

Course Number of credits

Computational Techniques
Computational and Applied Math 3
Computational Methods in Phys. Sciences 3
Deterministic Dynamical Systems 3
Stochastic Dynamical Systems 3

Computer Hardware/Software
Computer Networks 3
Relational Database Design 3
Object-Oriented Programming 3
Computer Architecture 3
Operating Systems 3
Advanced Computer Architecture 3
Theory of Programming Languages 3

Mathematical Methods
Numerical Analysis 3 
Differential Equations 3
Statistical Methods II 6
Math Models for Decision Making 6

Table 2. The new graduate curriculum.
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ter two years of operation. Besides the
majors, the program also serves stu-
dents and faculty members in other de-
partments through new courses, hard-
ware, and application software. We
have recently revised both the BS and
MS curricula (see Tables 1 and 2). We
have already offered the new courses to
both CSE and non-CSE majors, teach-
ing them integrated (computing, math-
ematical, simulation, and visualization)
skills in the sciences. The revised cur-
riculum is also a response to the needs
of employees working in Greater
Rochester companies such as Kodak
and Xerox.

Our efforts have been both interdis-
ciplinary and multi-institutional. The
CSE program has acquired a substan-
tial amount of external funds in the
form of equipment (including super-
computers) from Intel and SGI and re-

search grants from the US National
Science Foundation, the US Depart-
ments of Energy and Defense, and in-
dustry. We are working with SUNY,
Stony Brook; San Diego State Univer-
sity; and Boston University to develop
joint courses in high-performance sci-
entific computing and scientific visual-
ization, and we hope to obtain more
NSF funds to strengthen these part-
nerships. Collaboration with the Oak
Ridge National Laboratory has been a
strong element in establishing our pro-
gram. We are seeking to disseminate
the new curricula through NSF’s Edu-
cation Outreach and Training Partner-
ship for Advanced Computational In-
frastructure (www.eot.org) and the
High Performance Computing Users
Group (www.hpcu.org). 

The content of faculty research is
tightly connected to curriculum. We

have a well-established computa-
tional research program in fluid dy-
namics, engine combustion, plasma
physics, parallel computing, visual-
ization, molecular dynamics, drug de-
sign, and math software libraries. To
introduce students to simulation and
modeling in a hands-on way, we
must bring the expertise we gain do-
ing research into the classroom; stu-
dents can learn more effectively by
simulating systems of their choice.
We must also bring to the classroom
our collective experience with com-
mon tools such as computing, nu-
merical methods, parallel program-
ming, and visualization. The overall
research expertise of our faculty pro-
vides a pool of knowledge and tools
to support a sound curriculum for
students in both CSE and other dis-
ciplines. 
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