FOURIER ANALYSIS OF A SINGLE-PHASE FULL BRIDGE RECTIFIER USING MATLAB

Bruno Osorno
California Sate University Northridge
18111 Nordhoff St
Northridge CA 91330
Email: bruno@ecs.csun.edu
Phone: (818)677-3956

Abstract

The use of trigonometric Fourier series is applied when repetitive waveforms are found. This situation occurs at the output of full bridge single-phase rectifiers. As it will be seen, the application of a very powerful mathematical technique has given the right solution of a typical electrical engineering circuit. The waveforms analyzed are in their steady-state mode with a repetitive period “T” that depends on the physical electric circuit. [1]. We will indicate that the use of the fundamental signal of a distorted waveform becomes the most important piece of information. This is because in power electronics the calculation of “Power factor”, “Displacement power factor” and “Total Harmonic Distortion” make use of the fundamental value.

Theory and simulation

Non-sinusoidal waveforms, f(t), that have angular frequencies “ω” can be obtained as:

\[f(t) = F_0 + \sum_{h=1}^{\infty} \left(a_h \cos(\omega t) + b_h \sin(\omega t) \right) \]

Where:

The average value is:

\[F_0 = \frac{1}{2} a_0 \]

The average value of a periodic function is called the “DC value” of that function

The MATLAB statement for the average value of a waveform “v” is:

\[\text{vdc} = \text{mean}(v) \]
Now we will generate a waveform in order to obtain its dc value. The MATLAB code is given below.

```matlab
% Waverfom period divided in 512 points
Ts=1;dt=Ts/512
    t1=0:dt:Ts/4-dt;
    t2=Ts/4:dt:Ts/2-dt;
    t3=Ts/2:dt:Ts;
    t=[t1,t2,t3];
%Amplitudes for the waveform
    v=[10*ones(size(t1)),-5*ones(size(t2)),zeros(size(t3))];
%Plotting the waveform
    plot(t,v)
%Axis limits
    axis([0,Ts,-12,12])
%Setting the grid on
    grid
%Setting the labels
    xlabel('time in seconds')
%Calculation of the average DC value
    Vdc=mean(v)
```

![Waveform created with MATLAB.](image)

Vdc =

1.2476

The coefficient a_h becomes:
The coefficient b_h becomes:

$$b_h = \frac{1}{\pi} \int_{0}^{2\pi} f(t) \sin(h\omega t) \, d\omega$$

$h = 1, \ldots, \infty$

It is a well known fact that [2] the average value of $f(t)$ is:

$$F_0 = \frac{1}{2} a_0 = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) \cos(h\omega t) \, d\omega$$

Where the radian frequency is:

$$\omega = \frac{2\omega}{T}$$

This average was obtained using MATLAB for the waveform generated. The value was 1.2476 Volts. This can be easily proved using equation 5.

Now, moving on to the frequency domain, we can obtain the RMS (root mean square) of $f(t)$ as F_h. This notation usually is described as the “phasor” form of $f(t)$. Then:

$$F_h = F_0 e^{i\theta_h}$$

Another phasor form, using a_h and b_h coefficients, is given as follows:

$$F_h = \sqrt{a_h^2 + b_h^2}$$

Where the angle θ_h is obtained as follows:

$$\tan(\theta_h) = \frac{-b_h}{a_h}$$

Finally the RMS value of $f(t)$ is F, then we have the following equation:

$$F = \left(F_0^2 + \sum_{h=1}^{\infty} F_h^2 \right)^{\frac{1}{2}}$$

The MATLAB RMS of a waveform “v” can be obtained with the following statement:

$$V_{rms} = \text{sqrt}(\text{mean}(v^2))$$

The RMS value of the waveform “v” is obtained with the following program. The only addition to the previous code (Vdc) is the statement $V_{rms} = \text{sqrt}(\text{mean}(v^2))$.

"Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education"
Ts=1;dt=Ts/512
 t1=0:dt:Ts/4-dt;
 t2=Ts/4:dt:Ts/2-dt;
 t3=Ts/2:dt:Ts;
 t=[t1,t2,t3];
%Amplitudes for the waveform
 v=[10*ones(size(t1)),-5*ones(size(t2)),zeros(size(t3))];
%Plotting the waveform
 plot(t,v)
%Axis limits
 axis([0,Ts,-12,12])
%Setting the grid on
 grid
%Setting the labels
 xlabel('time in seconds')
%Calculation of the average DC value
 Vdc=mean(v)
%Calculation of the RMS value.
 Vrms=sqrt(mean(v.^2))

Vrms =

5.5847

»

The MATLAB harmonic value of a waveform “v” is obtained as follows:
% [f,y,ph]=harmonic(v,16);
title('Spectrum of "v" waveform')
xlabel('harmonic number')
ylabel('amplitude')
ph*180/pi

ans =

72.0387

Figure 2. Spectrum of figure 1 using MATLAB.

To obtain the spectrum we created a function that is stored in the work file of MATLAB. This function is listed below:

```matlab
%Creation of a function called “harmonic”

function [f,y,ph]=harmonic(x,n)
N=size(x,2);
f=0:1:N-1;
y1=fft(x);
y=2*(abs(y1)/N);
y(1)=y1(1)/N;
ph=angle(y1(2))+pi/2;
stem(f,y,'r')
axis([0,n-1,0,1.2*max(y)])
```

"Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition
Copyright © 2002, American Society for Engineering Education"
Fourier analysis of voltage and current

As stated earlier, the trigonometric Fourier analysis of a repetitive waveform can be obtained using equations 1 through 10. If we let \(v_s(t) = \sqrt{2} v_s \sin(\omega t) \) be the input voltage for a typical circuit (see figure 1) the input current can be obtained as:

\[
i_s(t) = i_{s1}(t) + \sum_{h=1}^{\infty} i_{sh}(t)
\]

Where:

- \(i_{s1}(t) \) is the fundamental component (at line frequency \(f_1 \)).
- \(i_{sh}(t) \) is the component at the “h” harmonic frequency (\(f_h \)).

![Figure 3. PSPICE circuit of a single-phase rectifier](image)

Then we have [1]:

\[
f_h = hf_1
\]
Then equation 11 can be expanded as follows:

\[i_s(t) = \sqrt{2}I_i \sin(\omega t - \theta_i) + \sum_{h \neq 1} \sqrt{2}I_{sh} \sin(\omega wt - \theta_h) \]

Typical distortion occurs at the current level, voltages remain, for the most part, undistorted. Figure 4 shows a very typical voltage-current waveform where the distortion of currents is apparent and the process of the Fourier trigonometric analysis can be seen.

![Figure 4. Typical voltage-current output and its Fourier components](image)

The RMS current is:

\[I_s = \left(\frac{1}{T_1} \int_0^{T_1} (i_n(t) + \sum_{h \neq 1} i_{sh}(t))^2 dt \right)^{1/2} = \left(I_n^2 + \sum_{h \neq 1} I_{sh}^2 \right)^{1/2} \]

The IEEE [10] standard recommends the maximum allowed harmonic content in power electronics depending on the type of circuit. This value is calculated using equation 15. “THD” stands for “total harmonic distortion” and it is usually given in %. PSPICE determines automatically this value. In MATLAB we have to calculate it. In the next section we show a PSPICE output for a simple single-phase rectifier.

\[\%THD = 100 \times \frac{\sqrt{I_n^2 - I_{sh}^2}}{I_{s1}} \]

Full bridge single-phase rectifier

Using PSPICE we obtained the output of a single-phase full bridge rectifier. Figure 2, shows the circuit and figure 5 shows the output. The trigonometric Fourier analysis is performed with PSPICE.
Conclusions

Power electronics and Power quality are one of the major fields in electrical engineering that require the understanding of “trigonometric Fourier series” and its applications. It is of no surprise that this technique works very well in obtaining the necessary information from input/output voltage/current signals. By doing so, we go a step further and determine the %THD that gives us an indication of the “goodness” of our electrical design. Again, by using one of the most powerful mathematical techniques we arrive to a simple, yet, very important solution of a problem that in the past was tedious and cumbersome in its solution. Recently, with the powerful use of Personal Computers and, perhaps the most widely used, software simulator and mathematical packages the application and solution of trigonometric Fourier series has become a lot simpler. Consequently the design of electrical circuits in general is getting better and better.

BIBLIOGRAPHY:

BRUNO OSORNO, is a professor of electrical and computer engineering at California State University Northridge. He is the lead faculty member in the Power Systems and Power Electronics program. Professor Osorno has written over 20 technical papers. His current interest in research is Fuzzy Logic applications in power electronics and electric motor drives.
As we have implemented a single phase rectifier in previous tutorials it will be really easy for you to understand the working of a three phase rectifier. At the start a brief and concise introduction of rectifiers and three phase rectifiers is provided along with its types. After that proper implementation of three phase rectifiers on MATLAB’s simulink is explained along with the working of each step and purpose of each block used and parameters settings of each block. Table of Contents. Introduction to rectifiers and three phase rectifiers. Types of rectifier. Single phase rectifier. Three phase rectifier. Introduction to rectifiers and three phase rectifiers. Bridge Rectifier-Full wave rectifier circuit with diagram & design. Tutorial on full wave bridge rectifier circuit theory, operation & working. A Full wave rectifier is a circuit arrangement which makes use of both half cycles of input alternating current (AC) and converts them to direct current (DC). In our tutorial on Half wave rectifiers, we have seen that a half wave rectifier makes use of only one-half cycle of the input alternating current. Thus a full wave rectifier is much more efficient (double+) than a half wave rectifier. Full wave rectifier can be constructed in 2 ways. The first method makes use of a centre tapped transformer and 2 diodes. This arrangement is known as Center Tapped Full Wave Rectifier. The Half wave rectifier is a circuit, which converts an AC voltage to DC voltage. During the positive half cycle of the input voltage diode gets forward biased. As a result a current IL flows through the load resistor, RL. The forward biased diode offers a very low resistance and hence the voltage drop across it is very small. Thus the voltage appearing across the load is practically the same as the input voltage at every instant. During the negative half cycle diode is reverse biased. For single phase applications, single phase inverter is used. There are mainly two types of single-phase inverter: Half Bridge Inverter and Full Bridge Inverter. Here we will study how these inverters can be built and will simulate the circuits in MATLAB. Half Bridge Inverter. This type of Inverter requires two power electronics switches (MOSFET). The MOSFET or IGBT is used for switching purpose. Circuit diagram of the half bridge inverter is as shown in below figure. As shown in circuit diagram, input DC voltage is Vdc = 100 V. This source is divided into two equal parts. Now gate pulses are given to the MOSFET as shown in below figure. The fft function uses a fast Fourier transform algorithm that reduces its computational cost compared to other direct implementations. For a more detailed introduction to Fourier analysis, see Fourier Transforms. The conv and filter functions are also useful tools for modifying the amplitude or phase of input data using a transfer function. Functions. expand all.